
Own change

Data Integration
With REST API

TECHNICAL WHITE PAPER

Own change
© 2019 TEKsystems, Inc. ALL RIGHTS RESERVED.

Real-time or near real-time accurate and fast retrieval of key metrics is a critical need for an
organization. Many times, valuable data are stored in siloed systems with zero or incomplete
integration with other critical systems, thereby leading to redundancy, inconsistency and
confusion when reporting on the data. This also requires allocating expensive person-hours to
manually collect, clean, aggregate and report the key metrics, resulting in valuable time lost
accessing critical data for key decisions. Maintenance and reporting costs and complexity
increase as data keep growing if no archival strategy is in place.

Our use case details an implementation that was successfully performed to resolve all
of these challenges.

Benefits achieved

•	 By creating an interactive dashboard for the CIO and
executives of the organization, both flexibility and
standardization were achieved—a key factor in driving
sound business decisions.

•	 The integration and transformation processing
automation has increased productivity by
eliminating human intervention and decreasing the
risk of human error.

•	 By initially landing data in the data lake, the
organization has lowered the cost of storing historical
data and created a flexible area to conduct expiration
for analytics and data science workloads.

Architecture

The below diagram depicts the logical architecture of
the implementation.

Data flow

1.	 Data is pulled from sources in a predefined
frequency by invoking respective REST API
routines. Informatica Java transformation in
Informatica is used for this purpose.

2.	 The data are then stored in Cloudera data lake in
native format.

3.	 The relevant data are then pulled into the
enterprise warehouse and transformed/
aggregated for analytical purposes.

4.	 Tableau connects to the analytics warehouse and
uses the aggregated data in the dashboards.

An overview of REST API

REST API, also known as RESTful APIs, is a popular
type of API. An advantage of REST API is that it uses
existing protocols like HTTP; therefore, no additional
software is needed for its creation.

Another advantage is its flexibility. It can handle multiple
types of calls and return data in different formats.

Roy Thomas Fielding originated REST architecture
and communicated six constraints that form the basis
of the RESTful style:

1.	 Client-Server. The client and the server should be
separate from each other and allowed to
evolve independently.

2.	 Stateless. REST APIs are stateless; requests can be
made independently of one another. Each request

Figure 1: REST data integration architecture

Data resides in multiple applications, both cloud-
based and local (file systems/databases). The strategy
used for cloud-based sources was Representational
State Transfer (REST) API. For local source systems,
direct connections were used. This article focuses on
the cloud-based source data extraction.

Own change
© 2019 TEKsystems, Inc. ALL RIGHTS RESERVED.

from the client will contain all the required data for
the server to process the request.

3.	 Cache. Because a stateless API can increase
request overhead by handling large loads of
incoming and outbound calls, a REST API should
be designed for cacheable data. This improves
network efficiency, as a client cache can reuse the
response data for future similar requests if
needed.

4.	 Uniform interface. The key to decoupling the
client from the server is having a uniform
interface that allows independent evolution of
the application without having the application’s
services, or models and actions, tightly coupled to
the API layer itself.

5.	 Layered system. REST APIs have different layers
of their architecture working together to build a
hierarchy, which helps create a more scalable and
modular application.

6.	 Code on Demand. Code on Demand allows for
code or applets to be transmitted via the API for
use within the application.

ETL implementation

The sequence (four steps) of ETL implementation
using Informatica BDM is explained. The first two
steps are relevant to this article; therefore, only those
are covered in detail.

Figure 2: ServiceNow dataset workflow

Step 1: Place the API request to ServiceNOW

Step 2: Load the response data from step 1, which will
be in JSON format, into Cloudera (data lake) in the
form of a flat file, and parse the JSON contents for
loading to a database staging table

Step 3: Load the data from staging table to
dimension/fact tables

Step 4: Refresh the ETL configuration data for
incremental load

The maps for a
ServiceNOW dataset

1.	 The Java_Snow_Call map with
relevant properties

Figure 3: Informatica Developer Java_Snow_Call to
Write_Snow_Call

Figure 4: Java_Snow_Call map with Properties

Figure 5: Java code

2.	 The map that loads the response from the REST
API to the data lake and staging table of the
data warehouse

Figure 6: m_Snow_Call_State

Own change
© 2019 TEKsystems, Inc. ALL RIGHTS RESERVED.

Java code snippet

Code that invokes the REST API

// Start of ‘On Input Row’ code snippet.

try {

String GET_URL = “https://xxxxx.service-now.com/api/
now/table/incident?sysparm_limit=2”;

URL obj = new URL(GET_URL);

HttpURLConnection con = (HttpURLConnection) obj.
openConnection();

con.setRequestMethod(“GET”);

con.setRequestProperty(“Authorization”, TOKEN);

con.setRequestProperty(“Accept”, “application/json”);

int responseCode = con.getResponseCode();

System.out.println(“GET Response Code :: “ +
responseCode);

if (responseCode == HttpURLConnection.HTTP_OK)

{//success

BufferedReader in = new BufferedReader(new
InputStreamReader(con.getInputStream()));

String inputLine;

StringBuffer response = new StringBuffer();

while ((inputLine = in.readLine()) != null)

{

response.append(inputLine);

}

in.close();

// print result

System.out.println(response.toString());

responseOut = response.toString();

}

else

{

System.out.println(“GET request not worked”);

}

System.out.println(“GET DONE”);

}

catch (Exception e)

{

logInfo(“Error”);

}

// End of ‘On Input Row’ code snippet.

JSON parsing

BDM has a built-in data processor transformation
that can be used to parse JSON data into key value
pairs, after which data can be loaded to any
relational target easily.

Steps involved:

•	 Obtain a sample of the JSON data that needs to
be parsed. Do this for all the distinct endpoints.
cURL query can be used for obtaining the JSON
dataset that is the response of a REST API request.

•	 Create a reusable data processor transformation
using the wizard.

•	 Select JSON as the source type, and use the
sample data fetched to infer the schema for data
processor transformation.

Figure 7: Data_Processor12

•	 Data processor transformation has one input port
that takes in the JSON string to be parsed as
input. Connect the output ports from the data
processor as needed to the correct downstream
write transformation.

Figure 7: Data_Processor12

Own change
© 2019 TEKsystems, Inc. ALL RIGHTS RESERVED.

Figure 8: m_Agile_Portfolio_Stage

Tips, tricks and troubleshooting

During the initial stage of exploring the REST APIs of
the respective applications, there can be a few
potential hurdles:

1.	 The URL/URI format. Framing the correct base
URL. The respective application’s API
documentation will provide this information.

2.	 Authentication method. Not all applications
support single sign-on (SSO) when it comes to
authentication. REST API calls may need a local
user (application user) or an authentication token
tagged to a local user.

3.	 Passing parameters and filters in API request. The
type of parameters or filters that can be passed will
be critical to reduce the volume of data that gets
pulled. Less data volume means better
performance. In a few applications, there is a
maximum limit of the data volume that cannot be
exceeded (e.g., ServiceNOW can restrict the number
of characters that can be in the API response to
ensure there is no performance bottleneck).

4.	 List of available attributes/calls. API
documentation of respective applications may
have all the attributes or will have details of the
code the metadata API invoked, which will give
the needed details.

Postman

Postman (getpostman.com/) is a good API tool that
we can install in our local machine for testing API calls
before those are used in the actual code.

Different formats of the responses (e.g., XML, JSON,
HTML, TXT) can be viewed, and different authorization
methods (e.g., Oauth, Basic, NTLM) are supported.

Figure 9: Postman ServiceNOW page

Figure 10: Authorization

Figure 11: Value: application

Authors:

Harshith Venkatesh at hvenkate@TEKsystems.com

Latha Jayaram at ljayaram@TEKsystems.com

Own change
© 2019 TEKsystems, Inc. ALL RIGHTS RESERVED.

About TEKsystems

We’re partners in transformation. We help clients activate ideas and solutions to take advantage of a new world of
opportunity. We are a team of 80,000 strong, working with over 6,000 clients, including 80% of the Fortune 500, across
North America, Europe and Asia. As an industry leader in Full-Stack Technology Services, Talent Services and real-world
application, we work with progressive leaders to drive change. That’s the power of true partnership. TEKsystems is an
Allegis Group company.

Experience the power of real partnership. TEKsystems.com

Latha Jayaram
ljayaram@TEKsystems.com

Latha Jayaram is a senior practice
architect for TEKsystems Global

Services. With more than 20 years’ experience
in analytics, she has worked with a wide
variety of tools and technologies in
architecting, solutioning, data modeling,
reporting and data warehouse applications.

Harshith Venkatesh

hvenkate@TEKsystems.com

Harshith is a Big Data engineer. He
has worked on different Hadoop

distributions like Cloudera, Hortonworks and
MapR, using multiple tools including HDFS,
Hive, Impala, NiFi, Sqoop, Spark and Pig. He
also has significant experience with the
Informatica Big Data Management suite.

ABOUT THE AUTHORS

